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Exercise 1

a Consider the function f P L1 pTq defined as the periodization of

f pxq :“ x p2π ´ xq . (1)

Calculate the Fourier coefficients of f and use them to prove that

`8
ÿ

k“0

1

k2
“
π2

6
. (2)

b Let σ be a positive real number and v, u P Rd. Consider the function gσ,v,u in the
space L2

`

Rd
˘

with d P N defined as

gσ,v,u pxq :“
´σ

π

¯
d
4
e´

σ
2
|x´v|2`iu¨x. (3)

Then prove that pgσ,v,u “ eiv¨ugσ´1,u,´v, i.e.

F
„

´σ

π

¯
d
4
e´

σ
2
|x´v|2`iu¨x



pkq “

ˆ

1

σπ

˙
d
4

e´
1
2σ
|k´u|2´iu¨pk´vq. (4)

Proof. For the proof of a, first consider the coefficients of f ; if k P Zz t0u those are given
as

pf pkq “
1
?

2π

ż 2π

0
x p2π ´ xq e´ikxdx

“
i

?
2πk

”

x p2π ´ xq e´ikx
ı2π

0
´

?
2i

?
πk

ż 2π

0
pπ ´ xq e´ikxdx

“

?
2

?
πk2

”

pπ ´ xq e´ikx
ı2π

0
`

?
2

?
πk2

ż 2π

0
e´ikxdx

“

?
2

?
πk2

„

´πe´2πki ´ π `
i

k

´

e´2πki ´ 1
¯



“ ´

?
8π

k2
.

On the other hand when k “ 0 we have

pf p0q “
1
?

2π

ż 2π

0
x p2π ´ xq dx “

1
?

2π

„

πx2 ´
1

3
x3
2π

0

“

?
8ππ2

3
.

1



We then use the fact that f p0q “ 0 to get

0 “ f p0q “
ÿ

kPZ

pf pkq “

?
8ππ2

3
´ 2
?

8π
`8
ÿ

k“0

1

k2

ùñ

`8
ÿ

k“0

1

k2
“
π2

6
,

which concludes the proof of (2).

For the proof of b, recall that for any positive real number α ą 0 we have

ż

Rd
e´α|x|

2

dx “
´π

α

¯
d
2
.

Consider now the function

hσ pxq :“ gσ,0,0 pxq “
´σ

π

¯
d
4
e´

σ
2
|x|2 .

In general we have that
Bxjhσ pxq “ ´σxjhσ pxq .

Consider then the derivative on the j-th component of phσ. Now, given that hσ is an
exponentially decaing continuous function, we can apply Leibniz theorem and integration
by part to get

Bkj
phσ pkq “

1

p2πq
d
2

ż

Rd
hσ pxq Bkj

´

e´ik¨x
¯

dx

“ ´i
1

p2πq
d
2

ż

Rd
xjhσ pxq e

´ik¨xdx

“
i

σ

1

p2πq
d
2

ż

Rd
Bxjhσ pxq e

´ik¨xdx

“ ´
i

σ

1

p2πq
d
2

ż

Rd
hσ pxq Bxje

´ik¨xdx

“ ´
1

σ
kjphσ pkq .

This is a well defined differential equation, with initial datum

phσ p0q “
1

p2πq
d
2

ż

Rd
hσ pxq dx “

ˆ

1

σπ

˙
d
4

If we now suppose that phσ pkq “ f1 pk1q ¨ . . . ¨ fd pkdq, we get that for any j

f 1j ptq “ ´
1

σ
tfj ptq ,
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and therefore, integrating t between 0 and kj we get

´
k2j
2σ
“ ´

ż kj

0

1

σ
tdt “

ż kj

0

f 1j ptq

fj ptq
dt “ rlog pfj ptqqs

kj
0 “ log

ˆ

fj pkjq

fj p0q

˙

,

and therefore we get

fj pkjq “ fj p0q e
´
k2j
2σ

ñ phσ pkq “
d
ź

j“1

ˆ

fj p0q e
´
k2j
2σ

˙

“ phσ p0q e
´
|k|2

2σ “

ˆ

1

σπ

˙
d
4

e´
|k|2

2σ “ hσ´1 pkq .

Recall now that for any vector r P Rd the operators Tr and Mr are defined as

Trf pxq :“ f px´ rq , Mrf pxq :“ e´ir¨xf pxq , @f P L1
´

Rd
¯

.

Then, we saw before that

FTr “MrF , FMr “ T´rF .

We now get to calculate the transform of gσ,v,u. First notice that gσ,v,u “M´uTvgσ,0,0 “
M´uTvhσ. Notice now that for any f P L2

`

Rd
˘

we get

pTuMvfq pxq “ pMvfq px´ uq “ e´iv¨px´uqf px´ uq “ eiv¨u pMvTufq pxq .

We then have

pgσ,v,u “ FM´uTvhσ “ TuMvhσ´1 “ eiv¨uMvTuhσ´1 “ eiv¨ugσ´1,u,´v,

which concludes the proof.

Exercise 2

Consider V1 and V2 two normed vector spaces over1 F and T : V1 Ñ V2 a linear mapping.
Define }T }V1,V2 as

}T } :“ sup
vPV1, v‰0

}Tv}

}v}
. (5)

For a generic linear mapping T we have }T } P r0,`8s. Prove that

}T } “ sup
vPV1, }v}V1

“1
}Tv} (6)

“ sup
vPV1, }v}V1

ď1
}Tv} . (7)

Prove moreover that the following are equivalent

1Here and in the following F can be chosen to be either R or C.
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a T is continuous.

b T is continuous in 0, meaning that for any sequence tvnunPN Ď V1,

vn Ñ 0 ùñ Txn Ñ 0. (8)

c The quantity }T } is finite, meaning that }T } ă `8.

Proof. To prove (6) we get

}T } “ sup
vPV1, v‰0

}Tv}

}v}
“ sup

vPV1, v‰0

›

›

›

›

T

ˆ

v

}v}

˙
›

›

›

›

“ sup
vPV1, }v}“1

}Tv} .

To prove (7) first notice that given that the unit sphere is a subset of the corresponding
unit ball we have

sup
vPV1, }v}“1

}Tv} ď sup
vPV1, }v}ď1

}Tv} .

On the other hand, suppose that v P V1 with }v} ď 1, then

sup
vPV1, }v}ď1

}Tv} ď sup
vPV1, }v}ď1

}T } }v} “ }T } ,

which concludes the proof of the first part of the exercise.

Next notice that a implies b trivially.

To prove that b implies c, we have that if T is continuous, the preimage of any open
set is open. In particular, consider2 T´1 pB1 p0qq. Given that 0 P T´1 pB1 p0qq and T is
continuous, there exists a positive real number R such that BR p0q Ď T´1 pB1 p0qq, or
equivalently, by linearity of T , that T pB1 p0qq Ď BR´1 p0q. This can be also written as

}v} ď 1 ùñ }Tv} ď
1

R

and implies in particular that

}T } “ sup
vPV1, }v}ď1

}Tv} ď
1

R
,

which implies c.

To prove that c implies a, consider a sequence tvnunPN Ď V1 such that vn Ñ v in V1. Then
we have

}Tvn ´ Tv} “ }T pvn ´ vq} ď }T } }vn ´ v} Ñ 0,

completing the proof of the exercise.

2Recall that Br pvq denote the ball of radius r around v.
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Exercise 3 (Young Inequality)

Consider p, q, r P r1,`8s such that

1

q
`

1

r
“ 1`

1

p
. (9)

Let f P Lq
`

Rd
˘

, g P Lr
`

Rd
˘

; prove that

}f ˚ g}p ď }f}q }g}r . (10)

Hint: Consider the functions α, β, γ defined as

α px,yq :“ |f pyq|q |g px´ yq|r , (11)

β pyq :“ |f pyq|q , (12)

γ px,yq :“ |g px´ yq|r , (13)

notice that

|f ˚ g pxq| ď

ż

Rd
α px,yq

1
p β pyq

p´q
pq γ px,yq

p´r
pr dy (14)

and that
1

p
`
p´ q

pq
`
p´ r

pr
“ 1 (15)

to apply Hölder inequality.

Proof. Consider α, β and γ as in the Hint. From basic algebraic properties of the Hölder
conjugate exponents we get that

α px,yqβ pyq γ px,yq “ |f pyq g px´ yq| .

Given that
1

p
`
p´ q

pq
`
p´ r

pr
“

1

q
`

1

r
´

1

p
“ 1,

applying the previous equality to (10) and using Hölder inequality we get

|f ˚ g pxq| ď

ż

Rd
α px,yq

1
p β pyq

p´q
pq γ px,yq

p´r
pr dy

ď

›

›

›
α px, ¨q

1
p

›

›

›

p

›

›

›
β
p´q
pq

›

›

›

pq
p´q

›

›

›
γ px, ¨q

p´r
pr

›

›

›

pr
p´r

“ }α px, ¨q}
1
p

1 }f}
p´q
p

q }g}
p´r
p

r .

Now expanding the norm of α we get that

}α}1 “

ż

R2d

|f pyq|q |g px´ yq|r dxdy

“ }f}qq }g}
r
r .
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So now we get

}f ˚ g}p “

„
ż

Rd

„
ż

Rd
f pyq g px´ yq dx

p

dy


1
p

ď }f}
p´q
p

q }g}
p´r
p

r

„
ż

Rd
}α px, ¨q}1 dy


1
p

“ }f}
p´q
p

q }g}
p´r
p

r }g}
r
p
r }f}

q
p “ }f}q }g}r ,

which concludes our proof.

Exercise 4

a Prove that there exists a positive real number C such that we have

sup
0ďaăbă`8

ˇ

ˇ

ˇ

ˇ

ż b

a

sinx

x
dx

ˇ

ˇ

ˇ

ˇ

ď C. (16)

Hint: Consider the function

F ptq :“

ż η

0
e´tx

sinx

x
dx. (17)

Deduce a bound on F 1ptq uniform in η. Apply the fundamental theorem of calculus
for F p0q to conclude.

b Consider an odd function f P L1 pRq. Prove that for any such function we have

sup
0ďaăbă`8

ˇ

ˇ

ˇ

ˇ

ˇ

ż b

a

pf pkq

k
dk

ˇ

ˇ

ˇ

ˇ

ˇ

ď
C

p2πq
d
2

}f}1 . (18)

c Let g pkq be a continuous odd function on the line such that is equal to 1{ log k for
any k ě 2. Prove that there cannot be an L1 pRq function whose Fourier transform
is g.

Proof. We first prove a; given that the function sinc is even, it is enough to bound the
following quantity:

ˇ

ˇ

ˇ

ˇ

ż η

0

sinx

x
dx

ˇ

ˇ

ˇ

ˇ

,

with η a positive real number.

Consider now the function F ptq defined as

F ptq :“

ż η

0
e´tx

sinx

x
dx.

Then F ptq is well defined and continuous for any real number t and we have that F p0q
is our initial quantity and F ptq Ñ 0 as tÑ `8. Moreover the derivative of F gives

F 1 ptq “

ż η

0
e´tx sinx dx “ ´Im

ˆ
ż η

0
e´pt`iqxdx

˙

“
1

1` t2
`

1´ te´ηt sin η ´ e´ηt cos η
˘

.
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Using now the fundamental theorem of calculus we get

F p0q “ F pT q `

ż 0

T
F 1 ptq dt

for any positive T and hence, taking the limit T Ñ `8

F p0q “ lim
TÑ`8

F p0q

“ lim
TÑ`8

„

F pT q ´

ż T

0
F 1 ptq dt



“ ´

ż `8

0
F 1 ptq dt

“

ż `8

0

1

1` t2
`

te´ηt sin η ` e´ηt cos η ´ 1
˘

dt.

For any positive real number η we get that

sup
tą0

ˇ

ˇte´ηt sin η
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

sin η

η

ˇ

ˇ

ˇ

ˇ

sup
tą0

te´t “

ˇ

ˇ

ˇ

ˇ

sin η

ηe

ˇ

ˇ

ˇ

ˇ

ď e´1

sup
tą0

ˇ

ˇe´ηt cos η ´ 1
ˇ

ˇ “ sup
tą0

`

1´ e´t cos η
˘

“ 1

and therefore we can bound |F p0q| as

ˇ

ˇ

ˇ

ˇ

ż η

0
e´tx

sinx

x
dx

ˇ

ˇ

ˇ

ˇ

“ |F p0q| ď
1` e

e

ż `8

0

1

1` t2
dt

“
π p1` eq

2e
.

Next, to prove b consider f an odd function. Then we have

f pxq “ ´f p´xq ùñ f pxq “
1

2
pf pxq ´ f p´xqq .

This implies that if we consider the Fourier transform of f we get

pf pkq “
1

2 p2πq
d
2

ż

R
rf pxq ´ f p´xqs e´ikxdx

“
1

2 p2πq
d
2

ż

R
f pxq

”

e´ikx ´ eikx
ı

dx

“
i

p2πq
d
2

ż

R
f pxq sin pkxq dx

“
2i

p2πq
d
2

ż `8

0
f pxq sin pkxq dx.
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We substitute this in (18) to get

ˇ

ˇ

ˇ

ˇ

ˇ

ż b

a

pf pkq

k
dk

ˇ

ˇ

ˇ

ˇ

ˇ

“
2

p2πq
d
2

ˇ

ˇ

ˇ

ˇ

ż b

a

ż `8

0
f pxq

sin pkxq

k
dxdk

ˇ

ˇ

ˇ

ˇ

ď
2

p2πq
d
2

ż `8

0
|f pxq|

ż b

a

ˇ

ˇ

ˇ

ˇ

sin pkxq

k

ˇ

ˇ

ˇ

ˇ

dkdx

“
2

p2πq
d
2

ż `8

0
|f pxq|

ż xb

xa

ˇ

ˇ

ˇ

ˇ

sin k

k

ˇ

ˇ

ˇ

ˇ

dkdx

ď
2Ξ

p2πq
d
2

ż `8

0
|f pxq| dx “

Ξ

p2πq
d
2

}f}1

where in the last inequality we used (16). This concludes the proof of b.

To prove c now, suppose g “ ph. Then on one hand from (18) for any positive real number
R ą 2 we would have

ˇ

ˇ

ˇ

ˇ

ż R

2

g pkq

k
dk

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ż R

2

ph pkq

k
dk

ˇ

ˇ

ˇ

ˇ

ˇ

ď
Ξ

p2πq
d
2

}h}1 .

On the other hand, we get that

ˇ

ˇ

ˇ

ˇ

ż R

2

g pkq

k
dk

ˇ

ˇ

ˇ

ˇ

“

ż R

2

1

k log k
dk “

ż logR

log 2

1

z
dz “ log

logR

log 2
,

where in the second equality we used the change of variables z “ log k. Now the last term
goes to infinity as R goes to infinity, but this is absurd given that we proved above that
it should be bounded uniformly in R. Therefore such an h does not exists and the proof
is complete.
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