

Introduction to Mathematical Quantum Theory

Solution to the Exercises

– 25.02.2020 –

Teacher: Prof. Chiara Saffirio

Assistant: Dr. Daniele Dimonte – daniele.dimonte@unibas.ch

Exercise 1

a Consider the function $f \in L^1(\mathbb{T})$ defined as the periodization of

$$f(x) := x(2\pi - x). \quad (1)$$

Calculate the Fourier coefficients of f and use them to prove that

$$\sum_{k=0}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{6}. \quad (2)$$

b Let σ be a positive real number and $\mathbf{v}, \mathbf{u} \in \mathbb{R}^d$. Consider the function $g_{\sigma, \mathbf{v}, \mathbf{u}}$ in the space $L^2(\mathbb{R}^d)$ with $d \in \mathbb{N}$ defined as

$$g_{\sigma, \mathbf{v}, \mathbf{u}}(\mathbf{x}) := \left(\frac{\sigma}{\pi}\right)^{\frac{d}{4}} e^{-\frac{\sigma}{2}|\mathbf{x}-\mathbf{v}|^2 + i\mathbf{u} \cdot \mathbf{x}}. \quad (3)$$

Then prove that $\hat{g}_{\sigma, \mathbf{v}, \mathbf{u}} = e^{i\mathbf{v} \cdot \mathbf{u}} g_{\sigma^{-1}, \mathbf{u}, -\mathbf{v}}$, i.e.

$$\mathcal{F}\left[\left(\frac{\sigma}{\pi}\right)^{\frac{d}{4}} e^{-\frac{\sigma}{2}|\mathbf{x}-\mathbf{v}|^2 + i\mathbf{u} \cdot \mathbf{x}}\right](\mathbf{k}) = \left(\frac{1}{\sigma\pi}\right)^{\frac{d}{4}} e^{-\frac{1}{2\sigma}|\mathbf{k}-\mathbf{u}|^2 - i\mathbf{u} \cdot (\mathbf{k}-\mathbf{v})}. \quad (4)$$

Proof. For the proof of **a**, first consider the coefficients of f ; if $k \in \mathbb{Z} \setminus \{0\}$ those are given as

$$\begin{aligned} \hat{f}(k) &= \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} x(2\pi - x) e^{-ikx} dx \\ &= \frac{i}{\sqrt{2\pi}k} \left[x(2\pi - x) e^{-ikx} \right]_0^{2\pi} - \frac{\sqrt{2}i}{\sqrt{\pi}k} \int_0^{2\pi} (\pi - x) e^{-ikx} dx \\ &= \frac{\sqrt{2}}{\sqrt{\pi}k^2} \left[(\pi - x) e^{-ikx} \right]_0^{2\pi} + \frac{\sqrt{2}}{\sqrt{\pi}k^2} \int_0^{2\pi} e^{-ikx} dx \\ &= \frac{\sqrt{2}}{\sqrt{\pi}k^2} \left[-\pi e^{-2\pi ki} - \pi + \frac{i}{k} (e^{-2\pi ki} - 1) \right] = -\frac{\sqrt{8\pi}}{k^2}. \end{aligned}$$

On the other hand when $k = 0$ we have

$$\hat{f}(0) = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} x(2\pi - x) dx = \frac{1}{\sqrt{2\pi}} \left[\pi x^2 - \frac{1}{3} x^3 \right]_0^{2\pi} = \frac{\sqrt{8\pi}\pi^2}{3}.$$

We then use the fact that $f(0) = 0$ to get

$$\begin{aligned} 0 = f(0) &= \sum_{k \in \mathbb{Z}} \hat{f}(k) = \frac{\sqrt{8\pi}\pi^2}{3} - 2\sqrt{8\pi} \sum_{k=0}^{+\infty} \frac{1}{k^2} \\ &\implies \sum_{k=0}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{6}, \end{aligned}$$

which concludes the proof of (2).

For the proof of **b**, recall that for any positive real number $\alpha > 0$ we have

$$\int_{\mathbb{R}^d} e^{-\alpha|\mathbf{x}|^2} d\mathbf{x} = \left(\frac{\pi}{\alpha}\right)^{\frac{d}{2}}.$$

Consider now the function

$$h_\sigma(\mathbf{x}) := g_{\sigma, \mathbf{0}, \mathbf{0}}(\mathbf{x}) = \left(\frac{\sigma}{\pi}\right)^{\frac{d}{4}} e^{-\frac{\sigma}{2}|\mathbf{x}|^2}.$$

In general we have that

$$\partial_{x_j} h_\sigma(\mathbf{x}) = -\sigma x_j h_\sigma(\mathbf{x}).$$

Consider then the derivative on the j -th component of \hat{h}_σ . Now, given that h_σ is an exponentially decaying continuous function, we can apply Leibniz theorem and integration by part to get

$$\begin{aligned} \partial_{k_j} \hat{h}_\sigma(\mathbf{k}) &= \frac{1}{(2\pi)^{\frac{d}{2}}} \int_{\mathbb{R}^d} h_\sigma(\mathbf{x}) \partial_{k_j} \left(e^{-i\mathbf{k} \cdot \mathbf{x}} \right) d\mathbf{x} \\ &= -i \frac{1}{(2\pi)^{\frac{d}{2}}} \int_{\mathbb{R}^d} x_j h_\sigma(\mathbf{x}) e^{-i\mathbf{k} \cdot \mathbf{x}} d\mathbf{x} \\ &= \frac{i}{\sigma} \frac{1}{(2\pi)^{\frac{d}{2}}} \int_{\mathbb{R}^d} \partial_{x_j} h_\sigma(\mathbf{x}) e^{-i\mathbf{k} \cdot \mathbf{x}} d\mathbf{x} \\ &= -\frac{i}{\sigma} \frac{1}{(2\pi)^{\frac{d}{2}}} \int_{\mathbb{R}^d} h_\sigma(\mathbf{x}) \partial_{x_j} e^{-i\mathbf{k} \cdot \mathbf{x}} d\mathbf{x} \\ &= -\frac{1}{\sigma} k_j \hat{h}_\sigma(\mathbf{k}). \end{aligned}$$

This is a well defined differential equation, with initial datum

$$\hat{h}_\sigma(\mathbf{0}) = \frac{1}{(2\pi)^{\frac{d}{2}}} \int_{\mathbb{R}^d} h_\sigma(\mathbf{x}) d\mathbf{x} = \left(\frac{1}{\sigma\pi}\right)^{\frac{d}{4}}$$

If we now suppose that $\hat{h}_\sigma(\mathbf{k}) = f_1(k_1) \cdot \dots \cdot f_d(k_d)$, we get that for any j

$$f'_j(t) = -\frac{1}{\sigma} t f_j(t),$$

and therefore, integrating t between 0 and k_j we get

$$-\frac{k_j^2}{2\sigma} = -\int_0^{k_j} \frac{1}{\sigma} t dt = \int_0^{k_j} \frac{f'_j(t)}{f_j(t)} dt = [\log(f_j(t))]_0^{k_j} = \log\left(\frac{f_j(k_j)}{f_j(0)}\right),$$

and therefore we get

$$\begin{aligned} f_j(k_j) &= f_j(0) e^{-\frac{k_j^2}{2\sigma}} \\ \Rightarrow \hat{h}_\sigma(\mathbf{k}) &= \prod_{j=1}^d \left(f_j(0) e^{-\frac{k_j^2}{2\sigma}} \right) = \hat{h}_\sigma(\mathbf{0}) e^{-\frac{|\mathbf{k}|^2}{2\sigma}} = \left(\frac{1}{\sigma\pi} \right)^{\frac{d}{4}} e^{-\frac{|\mathbf{k}|^2}{2\sigma}} = h_{\sigma^{-1}}(\mathbf{k}). \end{aligned}$$

Recall now that for any vector $\mathbf{r} \in \mathbb{R}^d$ the operators $T_{\mathbf{r}}$ and $M_{\mathbf{r}}$ are defined as

$$T_{\mathbf{r}}f(\mathbf{x}) := f(\mathbf{x} - \mathbf{r}), \quad M_{\mathbf{r}}f(\mathbf{x}) := e^{-i\mathbf{r} \cdot \mathbf{x}} f(\mathbf{x}), \quad \forall f \in L^1(\mathbb{R}^d).$$

Then, we saw before that

$$\mathcal{F}T_{\mathbf{r}} = M_{\mathbf{r}}\mathcal{F}, \quad \mathcal{F}M_{\mathbf{r}} = T_{-\mathbf{r}}\mathcal{F}.$$

We now get to calculate the transform of $g_{\sigma, \mathbf{v}, \mathbf{u}}$. First notice that $g_{\sigma, \mathbf{v}, \mathbf{u}} = M_{-\mathbf{u}}T_{\mathbf{v}}g_{\sigma, 0, 0} = M_{-\mathbf{u}}T_{\mathbf{v}}h_\sigma$. Notice now that for any $f \in L^2(\mathbb{R}^d)$ we get

$$(T_{\mathbf{u}}M_{\mathbf{v}}f)(\mathbf{x}) = (M_{\mathbf{v}}f)(\mathbf{x} - \mathbf{u}) = e^{-i\mathbf{v} \cdot (\mathbf{x} - \mathbf{u})} f(\mathbf{x} - \mathbf{u}) = e^{i\mathbf{v} \cdot \mathbf{u}} (M_{\mathbf{v}}T_{\mathbf{u}}f)(\mathbf{x}).$$

We then have

$$\hat{g}_{\sigma, \mathbf{v}, \mathbf{u}} = \mathcal{F}M_{-\mathbf{u}}T_{\mathbf{v}}h_\sigma = T_{\mathbf{u}}M_{\mathbf{v}}h_{\sigma^{-1}} = e^{i\mathbf{v} \cdot \mathbf{u}} M_{\mathbf{v}}T_{\mathbf{u}}h_{\sigma^{-1}} = e^{i\mathbf{v} \cdot \mathbf{u}} g_{\sigma^{-1}, \mathbf{u}, -\mathbf{v}},$$

which concludes the proof. □

Exercise 2

Consider V_1 and V_2 two normed vector spaces over¹ \mathbb{F} and $T : V_1 \rightarrow V_2$ a linear mapping. Define $\|T\|_{V_1, V_2}$ as

$$\|T\| := \sup_{v \in V_1, v \neq 0} \frac{\|Tv\|}{\|v\|}. \quad (5)$$

For a generic linear mapping T we have $\|T\| \in [0, +\infty]$. Prove that

$$\|T\| = \sup_{v \in V_1, \|v\|_{V_1} = 1} \|Tv\| \quad (6)$$

$$= \sup_{v \in V_1, \|v\|_{V_1} \leq 1} \|Tv\|. \quad (7)$$

Prove moreover that the following are equivalent

¹Here and in the following \mathbb{F} can be chosen to be either \mathbb{R} or \mathbb{C} .

a T is continuous.

b T is continuous in 0, meaning that for any sequence $\{v_n\}_{n \in \mathbb{N}} \subseteq V_1$,

$$v_n \rightarrow 0 \implies Tx_n \rightarrow 0. \quad (8)$$

c The quantity $\|T\|$ is finite, meaning that $\|T\| < +\infty$.

Proof. To prove (6) we get

$$\begin{aligned} \|T\| &= \sup_{v \in V_1, v \neq 0} \frac{\|Tv\|}{\|v\|} = \sup_{v \in V_1, v \neq 0} \left\| T \left(\frac{v}{\|v\|} \right) \right\| \\ &= \sup_{v \in V_1, \|v\|=1} \|Tv\|. \end{aligned}$$

To prove (7) first notice that given that the unit sphere is a subset of the corresponding unit ball we have

$$\sup_{v \in V_1, \|v\|=1} \|Tv\| \leq \sup_{v \in V_1, \|v\| \leq 1} \|Tv\|.$$

On the other hand, suppose that $v \in V_1$ with $\|v\| \leq 1$, then

$$\sup_{v \in V_1, \|v\| \leq 1} \|Tv\| \leq \sup_{v \in V_1, \|v\| \leq 1} \|T\| \|v\| = \|T\|,$$

which concludes the proof of the first part of the exercise.

Next notice that **a** implies **b** trivially.

To prove that **b** implies **c**, we have that if T is continuous, the preimage of any open set is open. In particular, consider² $T^{-1}(B_1(0))$. Given that $0 \in T^{-1}(B_1(0))$ and T is continuous, there exists a positive real number R such that $B_R(0) \subseteq T^{-1}(B_1(0))$, or equivalently, by linearity of T , that $T(B_1(0)) \subseteq B_{R^{-1}}(0)$. This can be also written as

$$\|v\| \leq 1 \implies \|Tv\| \leq \frac{1}{R}$$

and implies in particular that

$$\|T\| = \sup_{v \in V_1, \|v\| \leq 1} \|Tv\| \leq \frac{1}{R},$$

which implies **c**.

To prove that **c** implies **a**, consider a sequence $\{v_n\}_{n \in \mathbb{N}} \subseteq V_1$ such that $v_n \rightarrow v$ in V_1 . Then we have

$$\|Tv_n - Tv\| = \|T(v_n - v)\| \leq \|T\| \|v_n - v\| \rightarrow 0,$$

completing the proof of the exercise. □

²Recall that $B_r(v)$ denote the ball of radius r around v .

Exercise 3 (Young Inequality)

Consider $p, q, r \in [1, +\infty]$ such that

$$\frac{1}{q} + \frac{1}{r} = 1 + \frac{1}{p}. \quad (9)$$

Let $f \in L^q(\mathbb{R}^d)$, $g \in L^r(\mathbb{R}^d)$; prove that

$$\|f * g\|_p \leq \|f\|_q \|g\|_r. \quad (10)$$

Hint: Consider the functions α, β, γ defined as

$$\alpha(\mathbf{x}, \mathbf{y}) := |f(\mathbf{y})|^q |g(\mathbf{x} - \mathbf{y})|^r, \quad (11)$$

$$\beta(\mathbf{y}) := |f(\mathbf{y})|^q, \quad (12)$$

$$\gamma(\mathbf{x}, \mathbf{y}) := |g(\mathbf{x} - \mathbf{y})|^r, \quad (13)$$

notice that

$$|f * g(\mathbf{x})| \leq \int_{\mathbb{R}^d} \alpha(\mathbf{x}, \mathbf{y})^{\frac{1}{p}} \beta(\mathbf{y})^{\frac{p-q}{pq}} \gamma(\mathbf{x}, \mathbf{y})^{\frac{p-r}{pr}} d\mathbf{y} \quad (14)$$

and that

$$\frac{1}{p} + \frac{p-q}{pq} + \frac{p-r}{pr} = 1 \quad (15)$$

to apply Hölder inequality.

Proof. Consider α, β and γ as in the Hint. From basic algebraic properties of the Hölder conjugate exponents we get that

$$\alpha(\mathbf{x}, \mathbf{y}) \beta(\mathbf{y}) \gamma(\mathbf{x}, \mathbf{y}) = |f(\mathbf{y}) g(\mathbf{x} - \mathbf{y})|.$$

Given that

$$\frac{1}{p} + \frac{p-q}{pq} + \frac{p-r}{pr} = \frac{1}{q} + \frac{1}{r} - \frac{1}{p} = 1,$$

applying the previous equality to (10) and using Hölder inequality we get

$$\begin{aligned} |f * g(\mathbf{x})| &\leq \int_{\mathbb{R}^d} \alpha(\mathbf{x}, \mathbf{y})^{\frac{1}{p}} \beta(\mathbf{y})^{\frac{p-q}{pq}} \gamma(\mathbf{x}, \mathbf{y})^{\frac{p-r}{pr}} d\mathbf{y} \\ &\leq \left\| \alpha(\mathbf{x}, \cdot)^{\frac{1}{p}} \right\|_p \left\| \beta^{\frac{p-q}{pq}} \right\|_{\frac{pq}{p-q}} \left\| \gamma(\mathbf{x}, \cdot)^{\frac{p-r}{pr}} \right\|_{\frac{pr}{p-r}} \\ &= \left\| \alpha(\mathbf{x}, \cdot)^{\frac{1}{p}} \right\|_1 \|f\|_q^{\frac{p-q}{p}} \|g\|_r^{\frac{p-r}{p}}. \end{aligned}$$

Now expanding the norm of α we get that

$$\begin{aligned} \|\alpha\|_1 &= \int_{\mathbb{R}^{2d}} |f(\mathbf{y})|^q |g(\mathbf{x} - \mathbf{y})|^r d\mathbf{x} d\mathbf{y} \\ &= \|f\|_q^q \|g\|_r^r. \end{aligned}$$

So now we get

$$\begin{aligned}\|f * g\|_p &= \left[\int_{\mathbb{R}^d} \left[\int_{\mathbb{R}^d} f(\mathbf{y}) g(\mathbf{x} - \mathbf{y}) d\mathbf{x} \right]^p d\mathbf{y} \right]^{\frac{1}{p}} \leq \|f\|_q^{\frac{p-q}{p}} \|g\|_r^{\frac{p-r}{p}} \left[\int_{\mathbb{R}^d} \|\alpha(\mathbf{x}, \cdot)\|_1 d\mathbf{y} \right]^{\frac{1}{p}} \\ &= \|f\|_q^{\frac{p-q}{p}} \|g\|_r^{\frac{p-r}{p}} \|g\|_r^{\frac{r}{p}} \|f\|_q^{\frac{q}{p}} = \|f\|_q \|g\|_r,\end{aligned}$$

which concludes our proof. \square

Exercise 4

a Prove that there exists a positive real number C such that we have

$$\sup_{0 \leq a < b < +\infty} \left| \int_a^b \frac{\sin x}{x} dx \right| \leq C. \quad (16)$$

Hint: Consider the function

$$F(t) := \int_0^\eta e^{-tx} \frac{\sin x}{x} dx. \quad (17)$$

Deduce a bound on $F'(t)$ uniform in η . Apply the fundamental theorem of calculus for $F(0)$ to conclude.

b Consider an odd function $f \in L^1(\mathbb{R})$. Prove that for any such function we have

$$\sup_{0 \leq a < b < +\infty} \left| \int_a^b \frac{\hat{f}(k)}{k} dk \right| \leq \frac{C}{(2\pi)^{\frac{d}{2}}} \|f\|_1. \quad (18)$$

c Let $g(k)$ be a continuous odd function on the line such that is equal to $1/\log k$ for any $k \geq 2$. Prove that there cannot be an $L^1(\mathbb{R})$ function whose Fourier transform is g .

Proof. We first prove **a**; given that the function sinc is even, it is enough to bound the following quantity:

$$\left| \int_0^\eta \frac{\sin x}{x} dx \right|,$$

with η a positive real number.

Consider now the function $F(t)$ defined as

$$F(t) := \int_0^\eta e^{-tx} \frac{\sin x}{x} dx.$$

Then $F(t)$ is well defined and continuous for any real number t and we have that $F(0)$ is our initial quantity and $F(t) \rightarrow 0$ as $t \rightarrow +\infty$. Moreover the derivative of F gives

$$\begin{aligned}F'(t) &= \int_0^\eta e^{-tx} \sin x dx = -\text{Im} \left(\int_0^\eta e^{-(t+i)x} dx \right) \\ &= \frac{1}{1+t^2} (1 - te^{-\eta t} \sin \eta - e^{-\eta t} \cos \eta).\end{aligned}$$

Using now the fundamental theorem of calculus we get

$$F(0) = F(T) + \int_T^0 F'(t) dt$$

for any positive T and hence, taking the limit $T \rightarrow +\infty$

$$\begin{aligned} F(0) &= \lim_{T \rightarrow +\infty} F(0) \\ &= \lim_{T \rightarrow +\infty} \left[F(T) - \int_0^T F'(t) dt \right] \\ &= - \int_0^{+\infty} F'(t) dt \\ &= \int_0^{+\infty} \frac{1}{1+t^2} (te^{-\eta t} \sin \eta + e^{-\eta t} \cos \eta - 1) dt. \end{aligned}$$

For any positive real number η we get that

$$\begin{aligned} \sup_{t>0} |te^{-\eta t} \sin \eta| &= \left| \frac{\sin \eta}{\eta} \right| \sup_{t>0} te^{-t} = \left| \frac{\sin \eta}{\eta e} \right| \leq e^{-1} \\ \sup_{t>0} |e^{-\eta t} \cos \eta - 1| &= \sup_{t>0} (1 - e^{-t} \cos \eta) = 1 \end{aligned}$$

and therefore we can bound $|F(0)|$ as

$$\begin{aligned} \left| \int_0^\eta e^{-tx} \frac{\sin x}{x} dx \right| &= |F(0)| \leq \frac{1+e}{e} \int_0^{+\infty} \frac{1}{1+t^2} dt \\ &= \frac{\pi(1+e)}{2e}. \end{aligned}$$

Next, to prove **b** consider f an odd function. Then we have

$$f(x) = -f(-x) \implies f(x) = \frac{1}{2} (f(x) - f(-x)).$$

This implies that if we consider the Fourier transform of f we get

$$\begin{aligned} \hat{f}(k) &= \frac{1}{2(2\pi)^{\frac{d}{2}}} \int_{\mathbb{R}} [f(x) - f(-x)] e^{-ikx} dx \\ &= \frac{1}{2(2\pi)^{\frac{d}{2}}} \int_{\mathbb{R}} f(x) [e^{-ikx} - e^{ikx}] dx \\ &= \frac{i}{(2\pi)^{\frac{d}{2}}} \int_{\mathbb{R}} f(x) \sin(kx) dx \\ &= \frac{2i}{(2\pi)^{\frac{d}{2}}} \int_0^{+\infty} f(x) \sin(kx) dx. \end{aligned}$$

We substitute this in (18) to get

$$\begin{aligned}
\left| \int_a^b \frac{\hat{f}(k)}{k} dk \right| &= \frac{2}{(2\pi)^{\frac{d}{2}}} \left| \int_a^b \int_0^{+\infty} f(x) \frac{\sin(kx)}{k} dx dk \right| \\
&\leq \frac{2}{(2\pi)^{\frac{d}{2}}} \int_0^{+\infty} |f(x)| \int_a^b \left| \frac{\sin(kx)}{k} \right| dk dx \\
&= \frac{2}{(2\pi)^{\frac{d}{2}}} \int_0^{+\infty} |f(x)| \int_{xa}^{xb} \left| \frac{\sin k}{k} \right| dk dx \\
&\leq \frac{2\Xi}{(2\pi)^{\frac{d}{2}}} \int_0^{+\infty} |f(x)| dx = \frac{\Xi}{(2\pi)^{\frac{d}{2}}} \|f\|_1
\end{aligned}$$

where in the last inequality we used (16). This concludes the proof of **b**.

To prove **c** now, suppose $g = \hat{h}$. Then on one hand from (18) for any positive real number $R > 2$ we would have

$$\left| \int_2^R \frac{g(k)}{k} dk \right| = \left| \int_2^R \frac{\hat{h}(k)}{k} dk \right| \leq \frac{\Xi}{(2\pi)^{\frac{d}{2}}} \|h\|_1.$$

On the other hand, we get that

$$\left| \int_2^R \frac{g(k)}{k} dk \right| = \int_2^R \frac{1}{k \log k} dk = \int_{\log 2}^{\log R} \frac{1}{z} dz = \log \frac{\log R}{\log 2},$$

where in the second equality we used the change of variables $z = \log k$. Now the last term goes to infinity as R goes to infinity, but this is absurd given that we proved above that it should be bounded uniformly in R . Therefore such an h does not exist and the proof is complete. \square