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Exercise 1
a Consider the function f € L! (T) defined as the periodization of
flz):=22m—x). (1)

Calculate the Fourier coefficients of f and use them to prove that
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b Let o be a positive real number and v, u € R?%. Consider the function Jov,u in the
space L? (Rd) with d € N defined as
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Then prove that gy vu = €V "gp-1 4y v, i.e.
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Proof. For the proof of a, first consider the coefficients of f; if k € Z\ {0} those are given
as
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On the other hand when & = 0 we have
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We then use the fact that f(0) = 0 to get
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which concludes the proof of (2).
For the proof of b, recall that for any positive real number o > 0 we have
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Consider now the function
o
ho (%) i= gr00 (x) = (2)

In general we have that
Oz;ho (x) = —0zjhs (X)

Consider then the derivative on the j-th component of ?Lg. Now, given that h, is an
exponentially decaing continuous function, we can apply Leibniz theorem and integration
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by part to get
O, ho (k) = ——
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This is a well defined differential equation, with initial datum
| 1\
hy (0) = —— f he (X) dx = ()
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If we now suppose that he (k) = f1(k1)-...- fa(kq), we get that for any j
, 1



and therefore, integrating ¢ between 0 and k; we get
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and therefore we get
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Recall now that for any vector r € R< the operators Ty and M, are defined as

Tf()i=f(x=1),  Mf(x)i=e™f(x), VfeL'(R).

Then, we saw before that

FT, = MyF,  FM,=T_.F.

We now get to calculate the transform of g, v . First notice that gov.u = M_u1v 9500 =
M_,Tyhs. Notice now that for any f e L? (Rd) we get

(TuMyf) (x) = (Myf) (x —u) = VO (x — ) = eV (M T f) (x).

We then have
Jovu = FM_yTyvh, = TuMyhg—1 = eV " MyTuh,—1 = €V gp-1 4y,

which concludes the proof.

Exercise 2

Consider V; and V5 two normed vector spaces over' F and T : V| — V5 a linear mapping.
Define [Ty, , as

Tv
)= sp 10
vel, v2o |Vl
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For a generic linear mapping T we have ||T'| € [0, +o0]. Prove that

IT] = sup  |Tv] (6)
’UGVl, HUHV1:1
= sup [T (7)

veVa, folly, <1

Prove moreover that the following are equivalent

'"Here and in the following F can be chosen to be either R or C.



a T is continuous.

b T is continuous in 0, meaning that for any sequence {v,} c W,

neN

vy, >0 = Tz, —0. (8)
¢ The quantity |7'| is finite, meaning that |T'] < +oo.

Proof. To prove (6) we get

|T|| v
T = sup = T
veVy, v#0 HUH veVy, v#0 ”UH
— s T
veWr, [v]=1

To prove (7) first notice that given that the unit sphere is a subset of the corresponding
unit ball we have
s |Tv| < sup  |Tol.

veV, |v|=1 veV, |v|<1

On the other hand, suppose that v € V4 with |v]| < 1, then

sup  [Tv| < sup [T || =[T],

veVi, ul<1 veVi, ul<1
which concludes the proof of the first part of the exercise.
Next notice that a implies b trivially.

To prove that b implies ¢, we have that if T' is continuous, the preimage of any open
set is open. In particular, consider? T~ (B (0)). Given that 0 € 7= (B (0)) and T is
continuous, there exists a positive real number R such that Bg(0) < T~!(B;(0)), or
equivalently, by linearity of T', that T (B (0)) € Br-1 (0). This can be also written as

1
<1l= |Tv| < =
ol 7ol <
and implies in particular that
1
ITI= " sup [Tv] < 4,
veVr, |v|<1

which implies c.

To prove that ¢ implies a, consider a sequence {v,}, .y S V1 such that v, — v in V;. Then
we have
| Tvn = To| = |T (vn — )| < [T} |lvn — ] =0,

completing the proof of the exercise.

*Recall that B, (v) denote the ball of radius r around v.



Exercise 3 (Young Inequality)

Consider p, ¢, r € [1,+00] such that

—+-—-=1+- 9
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Let fe L4 (Rd), gelL” (Rd); prove that

1+ gll, < [£llg lgll,.- (10)

Hint: Consider the functions o, 3, v defined as

a(xy):=fW|gx-y)", (11)
By):=If ¥, (12)
Y (xy) =lgx-y), (13)
notice that
FrgGl < [ aty)b 8% 5 ey dy (14)
]Rd
and that )
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to apply Holder inequality.

Proof. Consider a,  and y as in the Hint. From basic algebraic properties of the Holder
conjugate exponents we get that

a(x,y)By)vxy) =1fy)gx-y)l.
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applying the previous equality to (10) and using Hoélder inequality we get
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Now expanding the norm of o we get that
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So now we get

p % p—q p—r %
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1017 gl gl 1512 = 151, L,

which concludes our proof.
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Exercise 4
a Prove that there exists a positive real number C such that we have

b sinx

sup f dr| < C. (16)
O<a<b<+oo |Ja T
Hint: Consider the function

17 S.

F(t) :=f e gy (17)
0 Xz

Deduce a bound on F'(t) uniform in n. Apply the fundamental theorem of calculus
for F(0) to conclude.

b Consider an odd function f € L' (R). Prove that for any such function we have

b F (k) C
L Tdk:

(2m)

<

sup
0<a<b<+w0

z 11l - (18)

¢ Let g (k) be a continuous odd function on the line such that is equal to 1/logk for
any k > 2. Prove that there cannot be an L' (R) function whose Fourier transform

is g.

Proof. We first prove a; given that the function sinc is even, it is enough to bound the
following quantity:
J T sin x
dx
0 X

Consider now the function F'(¢) defined as

)

with 1 a positive real number.

Then F (t) is well defined and continuous for any real number ¢ and we have that F' (0)
is our initial quantity and F'(¢) — 0 as t — +00. Moreover the derivative of F' gives
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Using now the fundamental theorem of calculus we get
0
F(0)=F(T) +J F'(t)dt
T

for any positive T' and hence, taking the limit T" — 400

F(0)= lim F(0)

T—+0
— Tlirfoo [F (T) — L ' F'(t) dt]
= — LHO F'(t)dt

+00 1
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For any positive real number n we get that
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and therefore we can bound |F (0)| as
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Next, to prove b consider f an odd function. Then we have

1

f@)=—f(-) = @) =50 @-f().

This implies that if we consider the Fourier transform of f we get

Fky=— f [ (2) — f (~2)] e~ da
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We substitute this in (18) to get
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where in the last inequality we used (16). This concludes the proof of b.

To prove ¢ now, suppose g = h. Then on one hand from (18) for any positive real number

R > 2 we would have
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On the other hand, we get that

R R log R
f g(k)dk‘ =J 1 dk;zf Liz —1og 082
9 k 9 klogk log2 ? log 2

where in the second equality we used the change of variables z = log k. Now the last term
goes to infinity as R goes to infinity, but this is absurd given that we proved above that
it should be bounded uniformly in R. Therefore such an h does not exists and the proof

is complete.
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